Early 2000’s (2000-2010)

                             

A programmable machine that responds to specified instructions and can execute a list of instructions known as a program. TodayÂ’s computers are electronic and ­digital—with wires, transistors, and circuits comprising the hardware and instructions and data comprising the software. Computers generally have these hardware components: (1) memory, allowing a computer to store data and programs, at least temporarily; (2) mass storage devices, allowing a computer to store and retain large amounts of data on the disk drives and tape drives; (3) input devices such as keyboards and a mouse, which act as conduits through which data are entered into a computer; (4) output devices, such as display screens and printers, that let users see what the computer has performed; and (5) a CPU or central processing unit, the primary component that executes the commands or instructions.On a humorous note, in a New Scientist article, futurologist Ray Kurzwell said that although a $1,000 personal computer in 2005 has about the computing power equivalent to that of an insect brain, if development advances continue at the same rate into the future, within 15 years a $1,000 personal computer should have the computing power equivalent to that of a human brain.On a global note, a controversial “computer-political” case arose on March 8, 2005, when JapanÂ’s anti-monopoly agency demanded that Intel Corporation stop business practices that the agency alleged were giving the worldÂ’s dominant CPU chip maker an unfair advantage in the PC marketplace. JapanÂ’s Fair Trade Commission (FTC) maintained that it would put forth a motion to enforce harsh actions if Intel failed to respond within 10 days to the allegations.In particular, the FTC claimed that Intel was in breach of JapanÂ’s antitrust laws as early as 2002 when the company gave discounts and marketing payments to PC manufacturers in exchange for exclusivity or near-exclusivity. The FTC claimed that Intel was engaging in actions to keep the CPUs made by competing companies from being used—thus resulting in the limited marketing success of JapanÂ’s own CPU chip manufacturers. IntelÂ’s marketshare of the CPU market in Japan rose to 90% in 2004 from 78% in 2002. The FTC alleged that Intel had offered special incentives to Hitachi Ltd., Sony Corporation, Fujitsu Ltd., Toshiba Corporation, and NEC Corporation to use the Intel chip and the branding of “Intel Inside” or “Centrino” (IntelÂ’s wireless networking chipset). Intel defended its business practices as being not only fair but also lawful. A general-purpose machine that processes data according to a set of instructions that are stored internally either temporarily or permanently. The computer and all equipment attached to it are called hardware. The instructions that tell it what to do are called “software.” A set of instructions that perform a particular task is called a “program” or “software program.”

What a Computer Does

The instructions in the program direct the computer to input, process and output as follows:
Input/Output The computer can selectively retrieve data into its main memory (RAM) from any peripheral device (terminal, disk, tape, etc.) connected to it. After processing the data internally, the computer can send a copy of the results from its memory out to any peripheral device. The more memory it has, the more programs and data it can work with at the same time.
Storage By outputting data onto a magnetic disk or tape, the computer is able to store data permanently and retrieve it when required. A system’s size is based on how much disk storage it has. The more disk, the more data are immediately available.

Processing (The 3 C’s)

The computer performs all processing by “calculating,” “comparing” and “copying” the data stored in its memory (RAM).
Calculate The computer can perform any mathematical operation on data by adding, subtracting, multiplying and dividing one set with another.
Compare The computer can analyze and evaluate data by matching it with sets of known data that are included in the program or called in from storage.
Copy The computer can move data around to create any kind of report or listing in any order.
Calculate, Compare and Copy By calculating, comparing and copying, the computer accomplishes all forms of data processing. For example, records are sorted into a new order by comparing two records at a time and copying the record with the lower value in front of the one with the higher value. The computer finds one customer out of thousands by comparing the requested account number to each record in the file. The query statement: SUM SALARY FOR TITLE = “NURSE” causes the computer to compare the title field in each record for NURSE and then add (calculate) the salary field for each match. In word processing, inserting and deleting text is accomplished by copying characters from one place to another.
Remember The 3 C’s If you wonder whether the computer can solve a problem, identify your data on paper. If it can be calculated, compared and copied on paper, it can be processed in the computer.

3CS1
The 3 C’s – Finding Things
This example counts all California records in the database by comparing each record with “CA.” Every record in the database is read into memory. The memory locations that state is written into are compared with the letters “CA” in the program. If they are equal, a “1” is added to the California counter. The second record is written into the same memory bytes as the first record, and the field is compared again. This process is performed until the last record has been examined.
3CS2
The 3 C’s – Displaying and Printing
Data are stored as contiguous fields in the database with no blanks in between. The data are displayed and printed the way we like to see it by writing the data into memory and copying the characters into the desired order. The date in this example is printed through a “picture,” which is a set of characters that acts as a filter. Each character in the date is compared to a corresponding character in the picture, and the one copied as output is determined by the rules. Pictures can be implemented in software or in hardware.
3CS3
The 3 C’s – Sorting
Sorting (resequencing) data is accomplished by comparing each item of data with the others and copying it into the appropriate order. Of course, there is a ton of calculating going on to keep track of what is being compared. Years ago, when databases were stored on tape, the speed of a vendor’s sort program was a powerful marketing feature. All transactions had to be sorted into account number sequence in order to be processed. In today’s online systems, data are often indexed. Instead of sorting the actual data records themselves, the much smaller indexes are sorted.
3CS4
The 3 C’s – Editing
The magic of word processing is nothing more than copying text. In this example, in order for the “O” to be inserted into the word, the remaining characters are copied one memory location (byte) to the right to make room for it. Deleting is copying in reverse. As in all data processing, there is a whole lot of calculating and comparing going on to keep track of where the text is stored in memory.

The Stored Program Concept

The computer’s ability to call in instructions and follow them is known as the “stored program concept.” Instructions are copied into memory from a disk, tape or other source before any data can be processed. The computer is directed to start with the first instruction in the program. It copies the instruction from memory into its control unit circuit and matches it against its built-in set of instructions. If the instruction is valid, the processor carries it out. If not, the computer comes to an abnormal end. The computer executes instructions sequentially until it finds a GOTO instruction that tells it to go to a different place in the program. It can execute billions of instructions per second, using the same program logic on each new set of data brought in.
Operations Overlap Input/output and processing are made to overlap. While one program is waiting for input from one user, the operating system (master control program) directs the computer to process data in another program. Large computers allow many input/output operations to occur simultaneously with processing. It can take hundreds of thousands of discrete machine steps to perform very routine tasks. Your computer could easily execute several million instructions to put a requested record on screen for you.

Computer Generations

First-generation computers, starting with the UNIVAC I in 1951, used vacuum tubes, and their memories were made of thin tubes of liquid mercury and magnetic drums. Second-generation systems in the late 1950s replaced tubes with transistors and used magnetic cores for memories (IBM 1401, Honeywell 800). Size was reduced and reliability was significantly improved. Third-generation computers, beginning in the mid-1960s, used the first integrated circuits (IBM 360, CDC 6400) and the first operating systems and DBMSs. Online systems were widely developed, although most processing was still batch oriented using punch cards and magnetic tapes. Starting in the mid-1970s, the fourth generation brought us computers made entirely of chips. It spawned the microprocessor and personal computer. It introduced distributed processing and office automation. Query languages, report writers and spreadsheets put large numbers of people in touch with the computer for the first time. Even with the hundreds of millions of people using computers every day, we are still in the fourth generation. Some skill is still required to use the computer even if only to surf the Web and send e-mail. The fifth generation implies faster hardware and more sophisticated software that uses artificial intelligence (AI) routinely. Natural language recognition is a major component of the fifth generation. When you can have a reasonably intelligent conversation with the average computer, you will be in the fifth generation, perhaps in the 2015-2020 time frame.